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Abstract-The solution to the Graetz problem in an annulus with a heated core and an insulated outer 
wall is presented. Both uniform temperature and uniform heat input on the inside wall are considered 
for a number of arbitrarily chosen radius ratios. The case of parallel plates with one side insulated 
is included for comparison. 

The solution is extended to certain cases of axial variation of the core heat input and to the case in 
which heat is transferred at uniform but unequal rates at both walls. 

NOMENCLATURE 

constant pressure specific heat; 
constant in the solution with the inside 
heated; 
mean diameter defined as 4 x area/ 
perimeter ; 
constant in the solution with the outside 
heated; 
fully developed temperature with inside 
heated ; 
fully developed temperature with outside 
heated; 
thermal conductivity; 
dimensionless passage length; 
heat transfer rate per unit area; 
radius; 
dimensionless radius; 
temperature ; 
dimensionless temperature in the con- 
stant wall temperature case; 
velocity; 
dimensionless velocity; 
distance from the entrance ; 
eigenfunction of equation (5) or (11) in 
the solution for the heating on the inside; 
slope of eigenfunction; 
eigenfunction of equation (11) in the 
solution for heating on the outside; 
dimensionless distance from the wall in 
a parallel passage ; 

* Lecturer in Mechanical Engineering. 
t Research Student, Department of Mechanical 

Engineering. 

Y’, 
Yov 

Re, 
Pr, 
Nu, 

distance from one wall; 
distance between the walls in a parallel 
passage; 
Reynolds number ; 
Prandtl number; 
Nusselt number. 

Greek symbols 
a, thermal diffusi$ty; 
A eigenvalue; 
0, dimensionless temperature in the con- 

stant heat input case; 

P, density; 
V, kinematic viscosity. 

Suffixes 
1, fully developed ; 

2, in the thermal entrance region; 
e, at the inlet; 
i, at the inner surface of the annulus ; 

m, bulk mean value; 
max, at the position of maximum velocity; 
n, eigenvalue number ; 

0, at the outer surface of the annulus. 

INTRODUCTION 

THE solution of the heat-transfer problem with 
fully developed laminar flow through a circular 
tube with the wall at constant temperature has 
been the subject of a great deal of attention in 
the past. The problem was solved in principle by 
Graetz [I] but the numerical calculation of the 
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(1) Constant fluid physical properties. 
(2) Fully developed laminar flow throughout. 
(3) Heat flow in the axial direction is negligible. 
(4) Temperature changes due to dissipative 

effects are negligible. 
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required eigenvalues was very tedious and he 
was able to obtain only the first three. Nusselt 
[2] improved the accuracy of the calculation, 
again of the first three eigenvalues. Sellars et al. 
[3] extended the analysis to the cases of constant 
heat input and axial variations of temperature 
and heat input and also derived asymptotic 
expressions for the higher eigenvalues. 

Recently, Brown [4] applied a digital com- 
puter to the Graetz problem and obtained the 
first ten eigenvalues for both a round tube and a 
flat duct. The amount of numerical work in- 
volved in these calculations is so large that the 
use of a computer is essential to obtain adequate 
accuracy. 

(5) Uniform temperature in the fluid at the 
start of heating. 

The energy equation then becomes 

p.c,.u& =; ,& at l “(a.r..3). (1) 

The following dimensionless parameters are 
defined 

2(R” - R4 - 2R;,,ln RoIRi) U=D--I 
R; + R; - 2R;,, (2) 

%m* = 
R; - R; 

2 In Ro/Rs * 

The bulk mean temperature tm is defined 

The solution of the equivalent problem in an 
annulus follows the Graetz solution very closely. 
There is the additional variable of the radius 
ratio and since there are two surfaces involved 
there are many further possible boundary condi- 
tions. Previous work on this problem is very 
limited. Jakob and Rees [5] gave results for For an annulus we have [8] 

the fully developed temperature profile but did 
not quote the Nusselt numbers since they did not 
calculate the bulk mean temperatures. Mura- 
kawa [6] presented an analysis for the combined where 
hydrodynamic and thermal entry length, but 
this is very complicated and numerical results 
were quoted for one radius ratio only. He also 
gave results for the thermal entry length for a 
particular radius ratio, but this does not appear 
to agree with the corresponding values given in 
this paper. Montgomery and Weiss [7] have 
surveyed the work on heat transfer in non- 
circular ducts and include a useful bibliography. 

Results are presented in this paper for the 
thermal entry region with laminar flow in an 
annulus with the outside wall insulated. This 
case has some practical bearing in double pipe 
heat exchangers. Both constant temperature and 
constant heat input on the inside pipe are 
considered. The results can be easily extended 
to axial variations of temperature and heat in- 
put on the inner wall by the superposition 
thereon. The case of unequal heat inputs on 
each side may also occur in practice and this 
boundary condition is briefly considered. 

s;o u . t .2nr. dr 
t, = i__.__ 

um7r(ri - rf) 

2 RO =____ 
2Ri $- 1 s 

U.t.R.dR. 
Ri 

Solution with uniform temperature on the inside 
wall, outside wall insulated 

The dimensionless temperature T is defined by 

T=f7tt 
te - tl 

the solution is 

T= g C,Y,exp(- XiL). 
,1=-o 

(4) 

BASIC EQUATIONS Where A, and Y, are the n? eigenvalue and 
The following assumptions are made. function of the Sturm Liouville problem: 
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Y = 0, R = Ri 

dY 
dR = 0, R = Ro. 

The constants C, are given by 

c 
’ 

&KU. Yn.dR 
.-. 

f$R. U. Y;. dR 

The Nusselt number is 

Ml = 
2Rr + l g ‘% ‘,‘i exp (- ‘i L, 

n 0 

* (7) 

The eigenvalues and constants were calculated 
with the aid of the Manchester University 
Mercury Computer for the annuli shown in 
Fig. 1 and the results are given in Table 1, The 
fully developed Nusselt number is shown on 
Fig. 2 and the values in the entrance region on 
Fig. 3. 

(5) 

(6) 

R; =0.2 RI-o.5 Ri= I.0 R;=2.0 Ri=20 
Ra,1Ri=6 R, Ri=3 Ro/‘Ri=2.0 R,/Ri=l’S Ro/Ri=21/20 

FIG. 1. The annuli. 

NO. 

Table 1. Eigenvaiues and consfanfs 

R,=C2 
A, 

R&=05 
cn Y',, A" C.Y'., 

: 
3 

1.124954 
4B2686 
7 830728 

11 04763 
14.25304 
17.45278 
2064929 
23.84375 
27.03685 
30.22899 

0+3497293 
~~~~~~~ 

0.2554939 
0~2328140 
,‘b’LlhS7Af, - _ __ _ 
0.2041237 
0~1941389 
0.1858733 
0.1788674 

1.282161 
4 704357 
7.981437 

Il.23569 
14.48154 
17 72327 

;::;gg 

27.43748 
30 67373 0 4123141 

I 2 3 4 5 6 

fL!R, 

FIG. 2. Fully developed Nusselt numbers. 

As a check, the values for a parallel wall duct 
were calculated. The governing equation was 
separated in a slightly different way and the 
expression for Nusselt number was obtained in 
the following form 

3 ) “* exp (- y L/6) 
/ ‘%I 
tl=Cl 

The relevant values are given in Table 2. The 
Nusselt numbers are very close to those for the 
annuhts with radius ratio 21:20 and could not 
be shown separately on Fig. 3. For a direct 
comparison between the eigenvalues for the 
parallel plate case and those for the annuli it is 
necessary to divide the former by 46. The dotted 
curve is taken from Prins et al. [9] and is for 
both sides at uniform temperature. 

for the anmdus wifh uniform inside wali femperafure 
_. ---___ 

A" 
R, = 1.0 R,= 2-Q Ri = 

GY',. A, Gr'., Al 
20.0 

C” y’.t 

I,383003 
~~~~~~ 

11‘32103 
14%304 
17*8419S 

:%::I: 
27 61044 
30 86523 

4.838529 
2-956594 

~:~~~~~ 

2cos779 
I.873612 
1 770727 
l-687354 
1.617808 
1~558519 

ll-lo3a 
14.67321 
17-94215 _ .-_. 
11.21035 
24-47810 

4402721 
28-65738 
23-9499 1 

%:%E 
;yma; 

lb:49834 
15mo19 
15.24163 
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Table 

Ri 

0.2 

0.5 

I.0 

2.0 

0.1 I.0 
4 x -._ 

Re Pr d 

FIG. 3. Nusselt numbers for the uniform temperature case. (Both sides heated [9]). 

2. Eigenvalues and constants for the parallel 
plate case with uniform temperature 

- 

No. ki Cl2 y;, 

1 3.818667 
2 11.89723 
3 19.92414 
4 27.93835 
5 35.94734 
6 43.95364 
I 51.95837 
8 59.96211 
9 67.96519 

10 15.96784 

2.176545 
1.427232 
1.193603 
1.063782 
0.9768908 
0.9129374 
0.8630460 
0.8225616 
0.7887606 
0.7599269 

sufficiently well. The direct integration of the 
equations was therefore again used to calculate 
this case. 

It is more convenient with uniform heat input 
to define the dimensionless temperature 6’ so that 
0 = (t - te)l(@/k). 

The usual procedure (see, for example, 
Sparrow et al. [lo]) is followed of dividing the 
solution into two parts, 0, the fully developed 
solution, and e2 an entry temperature which dis- 
appears at large L. 

The solution is written 

Solution with uniform heat input on the inside wall, 
outside wall insulated 

Sellars et al. [3] showed that the results for 
this case can be derived from those for uniform 
temperature by the method of Laplace trans- 
forms. The result is obtained in the form of a 
power series whose roots are identically the 
eigenvalues of the uniform heat input case. Both 
this method and the method of direct integration 
were used initially to obtain these eigenvalues. 
However, the method of Sellars et al. does 
require a large number of uniform temperature 
eigenvalues to derive the uniform heat input 
eigenvalues, and from the first ten previously 
calculated, the values obtained did not compare 

where G is a function of R only and is the fully 
developed profile having a bulk mean value of 
zero 

8, = 5 C, Yn exp (- A; L). 
?I=0 

(10) 

Where A, and Y, are the eigenvalues and 
functions of 

1 

dY 
dR =O, 

dY 
-- = 0, 
dR 

R = Ri 1 (11) 

R = Ro 
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and 
c =_JFR.U.G.Y,dR 

n 
j$R.U.Y,dR - (12) 

The Nusselt number becomes 

Nu = - 
1 

Gt [l - 5 C, exp (- X,Z L)] 
* (13) 

iI=0 

The eigenvalues and constants are given in 
Table 3 and the entrance region Nusselt number 
is shown in Fig. 4. 

Again the parallel plate case was used for 
comparison and the values are given in Table 4. 

The fully developed temperature profile with 
parallel walls is easily found to be 

(+y34-y++$ 

where y = y’/y,. 
Also the Nusselt number 

(14) 

2 
Nu =--- 

Table 3. Eigenvalues and constants for the annulus with uniform heat input 

R, = 0.2 R, = 0.5 R, = 1.0 R, = 20.0 
NO. A. CT, A. C" A, G A. C" 

1 0 4201319 04459568 3~759184 
6.962990 

10.15092 
13.33620 
1652106 
19.70603 
22.89124 
26.07671 
29.26243 
3244839 

0.3548737 
0.1456844 
0.08324779 
0.05509405 
0.03968200 
0.03020993 
0~0239l886 
0~01950030 
0.01626300 
0.01381129 

3.728149 
6.985235 

10.22638 
13.46328 
16.69850 
19.93290 
;;:%6!; 

29 63410 
32.86757 

04024391 
0.1493154 
0.08121473 
0.05217145 
0.03682774 
0.02762987 
0.02163319 
0.01748174 
0.01447512 
0 01221967 

3.710159 
6.994383 

10.25972 
13.51925 
16.77621 
20.03179 
23.28655 
26.54078 
29.79465 
33.04830 

_ .- ._. 
0.1496722 
0.07966408 
0.05055061 
MN;; 

002058747 
0.01658108 
0.01369226 
0.01153305 

3.695862 
7W1240 

lo.28435 
13.56024 
16.83282 
20.10357 

;::z;“2:: 
29.91052 
33.17858 

0.1495232 
0.07794680 
0.04887533 
0.03396640 
0.02519695 
0.01956512 
0.01570465 
0.01293594 
0.01087097 

Value G, = 0.108469 G< = 0.143261 G, = 0.161785 G, = 0.184451 

_- 

4.- X 
ffe.Pr d 

FIG. 4. Nusselt numbers for the uniform heat input case. 



978 A. P. HATTON and A. QUARMBY 

Table 4. Eigenvalues and constants for the parallel 
plate case with unifbrm heat input 

No. 42 CT, 

The fully developed Nusselt numbers given by 
both equations (16) and (17) are equal to the 
uniform heat input value. The entrance lengths 
are rather longer than that for uniform input. 

1 9.052444 0447007 
2 17.14890 0.1495767 
3 2519075 0.0778954 
4 33.21491 OG488l937 
5 41.23094 0.03391114 
6 49.24249 0.02515193 
7 57.25131 0.01952389 
8 65.25834 0.01567085 
9 73.26415 0.01290481 

10 81.26912 0.01084480 

AXIAL VARIATIONS ON THE INSIDE WALL, 

OUTSIDE WALL INSULATED 

Using Duhamel’s integral, expressions can be 
obtained for Nusselt numbers with axial varia- 
tions of temperature and heat input on the core 
in terms of the eigenvalues and constants already 
obtained [3]. 

(a) Linear temperature increase 
If the initial temperature is zero we obtain 

c 2Rr + 1 ,,=o 

‘9 [l - exp( - h:L)] 

NZ4=-7 

* Gay:, 
. (16) 

c 
-F [ 1 - exp(- h:L)] 

n n=o 

(c) Half-sine wave heat input variation super- 
imposed on a uniform heat input 

An axial variation of this form occurs in the 
fuel rod of a gas-cooled reactor, and although 
the flow in practice is usually turbulent, the 
expression for Nusselt number variation may be 
of interest. It is necessary to define the heated 
length over which the sine wave extends and the 
ratio A of the maximum output of the sine 
component to the output of the uniform com- 
ponent 

m * 
4 

--- L I __------ 

A = a/b 

Heat input variation. 

The expression for Nusselt number is 

Nu = 

1 + A sin F 
1 

m 

l-_CC,exp(-h,aL)+Asin$-A 
c 

CTPYL* 

(nlL,)2+ 
h:L) 

?l=” 1 n=o 
(b) Linear increase of heat input rate Figure 5 shows an example for the annulus 

with Ri = 1.0. The value of L, was chosen 

Nu = _~_m.. ____~~__~~ 

1 - &si :I - exp (- Air)]) 

arbitrarily at 0.1 and three values of the ratio A 
are shown. For large A the result tends to that 

Gi for the pure half sine-wave and for small A 

n=o to the uniform heat input case previously 

(17) obtained. 



HEAT TRANSFER IN THE THERMAL ENTRY LENGTH 979 

nifwm heat input L4 ~0) 

6 

4 

2 

0 0’01 0’02 0’03 0’04 0’05 0’06 0’07 0’08 0’09 0’1 

1 

FIG. 5. Nusselt numbers: sine and step axial varia- 
tion of heat input, R, = 1.0, L, = 0.1. 

UNIFORM HEAT INPUTS ON BOTH WALLS 

In some practical situations heat transfer may 
occur on the outer wall. There may, for example, 
be a heat loss from the outer surface in a double- 
pipe heat exchanger. 

With uniform but unequal heat transfers on 
each wall the same eigenvalues apply but a new 
set of constants must be determined. For the 
case of uniform but unequal temperatures it is 
necessary to calculate a new set of eigenvalues. 

The result for unequal heat inputs is easily 
obtained by superposing the temperature pro- 
files resulting from heating on the inside only 
and from heating on the outside only. In both 
parts of the solution the entrance component is 
represented by equation (11). It is necessary to 
add to the previous solution the fully developed 
profile with the outside heated and to modify 
the constants of equation (12). If, for this 
component, the developed temperature is H, the 
constants Dn and the functions Z, the Nusselt 
numbers may be written: 

Table 5 gives the additional constants which 
appear in the above expressions for the annulus 
having Rt = 1-O and Fig. 6 shows the Nusselt 
numbers for the particular case of 4t = -qO i.e. 
equal heat input rates on each side. The sign 
convention adopted for qi and qO in the above 

Table 5. Constants requiredfor calculating Nusselt numbers 
with unequal uniform heat inputs and uniform heat input on 

the outside only (R, = 1.0) 
~- 

No. Y no D, (&ZJ, 

1 0~1308397 0.452343 - 0.1110536 
2 - 0.1269216 0.1501202 0.0379933 
3 0.1251726 0.0777155 - 0.0199435 
4 - 0.1241494 0.0485114 0.0125517 
5 0.1234661 0.0335976 - 0.00874106 
6 - 0.1229720 0.0248635 0+X&49469 
7 0.1225951 0.01926552 - OXrO504785 
8 - 0.1222961 0.01544087 O+Ml4O5556 
9 0.1220517 0.0127001 - 0.0033423 1 

10 - 0.1218466 0.01066189 003281051 
G, = 0.161785 
G, = 0.042757 
H, = 0.198548 
H, = 0.0855143 

100 

NU 

10 

0’01 4 
_.’ 
Re Pr d 

FIG. 6. Nusselt numbers: equal uniform heat input 
rate on each side, R, = 1.0. 

1 
Nut = 

Gs[l - “c. C, exp (- h;L)] + F [Hi + 5 D,.Gr exp (- AiL)l 
(19) 

r)=” z “=O 

1 
Nu, = 

z [Go +-$ C 71 120 exp (- $$)I + H0 [l - 5 Dn exp (-@)I 
(20) 

Y 
tl=0 II = 0 
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expression is that they have like signs when they 2. W. NUSSELT, Heat exchange in a spray cooler. Z. Ver 

are in the same direction. Dtsch. Zg. 67, 206 (1923). 

Because of the form of equations (19) and (20) 3. 
it is possible for the Nusselt number to behave 
in an unusual way. It may be negative or pass 
through an infinite value for certain ratios of 4. 
40/@ 

The wall temperature variation in this case 
can be inferred from the Nusselt number varia- 
tion which yields the difference between the wall 
and bulk mean values. For unequal heat rates 
the bulk temperature is given by 

J. R. SELLARS, M. TRIBUS and J. S. KLEIN, Heat 
transfer to laminar flow in a round tube or flat 
conduit-the Graetz problem extended. Trans. Amer. 
Sot. Me&. Engrs, 78 (2), 441 (1956). 
G. M. BROWN, Heat or mass transfer in a fluid in 
laminar flow in a circular or flat duct. J. Amer. hr. 
C/rem. Engrs, 6, 179 (1961). 
M. JAKOB and K. A. REES, Heat transfer to a fluid in 
laminar flow through an annular space. Trans. Amer. 
Inst. Chem. Engrs, 37, 619 (1941). 
K. MURAKAWA, Heat transfer inentrylengthofdouble 
pipes. Znt. J. Hear Mass Transfer, 2, 240 (1961). 
S. R. MONTGOMERY and H. K. WEISS, Forced con- 
vection heat transfer in ducts of non-circular cross- 
section. N.E.L. Report No. 1, June (1961). 
H. LAMB, Hydrodynamics 5th Ed. CambrIdge 
University Press (1924). 

(21) 8 

Thus the wall temperature variation on each 
side can be derived from (19) or (20) and (21). 

9, 
J. A. PRINS, J. MULDER and J. SCHENK, Heat transfer 
in laminar flow between parallel plates. Appl. Sci. 
Res. A2, 431 (1951). 
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R&sum&La solution du probltme de Graetz est BtudiCe dans le cas d’un anneau chauffb par un 
enroulement et dont la paroi exterieure est isol&. 

On considtre que l'on A la fois a une tempbature uniforme et un ,flux de chaleur uniforme sur la 
paroi intbrieure, pour des rapports de rayons arbit’rairement choisis. On a &udiC B titre de comparaison 
le cas de plaques planes parelleles isol&es d’un c&e. 

La solution est &endue g certains cas de variation axiale du flux chaleur de l’enroulement et au cas 
oti le flux de chaleur transmis aux deux parois est uniforme mais diffkrent. 

Zusammenfassung-Die LGsung des Graetz-Nusselt-Problems im Ringraum mit beheiztem Kern und 
isolierter Aussenwand wird angegeben. Sowohl der Fall konstanter Wandtemperatur als such kon- 
stanter Wlrmestromdichte wurde fiir eine Anzahl willkiirlich gewlhlter Radienverhlltnisse 
beriicksichtigt. Als Vergleich dienen zwei parallele Platten, wovon eine lsoliert ist. Die LGsung l&t 
sich auf einige achsiale Variationen der Heizleistung und auf den Fall konstanter, aber ungleicher 

Wlrmezufuhr von beiden WBnden ausdehnen. 

AHHoTaquX-fiaeTcn pememie 3anaqlr I’peTqa Ann ~30~5Iponannoro caapyXttn ~onbrlenoro 
IiaHajIa c BnyTpemmM IICT~~HL~KOM TenJra. PaCCMOTpeH KaK CJIyYati ITOCTOFIHHOti TeMIIepa- 
TPpbI BHyTpeHHeti CTeHKLi,TaK I, CJIyqat paBHOMepAOti IIOHaYll TeIIJIa K Heti L(JIFI pFIAa IIpO- 
II3BOJIbHO BbI6paHHbIX OTHOmeHd panHycOB. IIpoBeAeHo CpaBHeHIle c napanJIenbHbIMm 

IlJIaCTEIHaMII, OnHa IIOBepXHOCTb KOTOpbIX H30JILIpOBaHa. 
Pememre pacnpocTpaImeTcH Ha 0npeneneIIHbIe cnysaII aKcHa.xbHoro IIaMeHeHIxH*no~aurr 

Tenna K IIeHTpanbIIoR 'IacTn KaHaJIa 14 Ha cnyqaft, KorAa nepenasa Tenna K oCie&rM CTeHKax 
IIpOI5CXO~IIT paBHOMepH0, II0 C paSHO8 CKOpOCTbFO. 


