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Abstract—The solution to the Graetz problem in an annulus with a heated core and an insulated outer
wall is presented. Both uniform temperature and uniform heat input on the inside wall are considered
for a number of arbitrarily chosen radius ratios. The case of parallel plates with one side insulated

is included for comparison.

The solution is extended to certain cases of axial variation of the core heat input and to the case in
which heat is transferred at uniform but unequal rates at both walls,

NOMENCLATURE ¥y, distance from one wall;
Cp, constant pressure specific heat; Yo, distance between the walls in a parallel
C, constant in the solution with the inside passage;
heated; Re, Reynolds number;
d, mean diameter defined as 4 X area/ Pr, Prandtl number;
perimeter; Nu, Nusselt number.
D, constant in the solution with the outside
heated; . Greek symbols
G, fully developed temperature with inside a, thermal diffusivity;
heated ; . , A, eigenvalue;
H, fully developed temperature with outside 9, dimensionless temperature in the con-
heated stant heat input case;
k,  thermal conductivity; p,  density;
L, dimensionless passage length; v,  kinematic viscosity.
g,  heat transfer rate per unit area;
r, radius;
R, dimensionless radius; Suffixes
1, temperature; L, fully developed; .
T, dimensionless temperature in the con- 2, inthe .therr.nal entrance region;
stant wall temperature case; % at the }nlet, .
u,  velocity: i,  atthe inner surface of the annulus;
U, dimensionless velocity; m,  bulk mean Yalue; . .
x, distance from the entrance: max, a-t the position of r.nax1mum velocity;
Y, eigenfunction of equation (5) or (11) in n,  eigenvalue number;
the solution for the heating on the inside; 0,  atthe outer surface of the annulus.
Y’, slope of eigenfunction;
Z, cigenfunction of equation (11) in the INTRODUCTION
solution for heating on the outside; THE solution of the heat-transfer problem with
y,  dimensionless distance from the wall in  fully developed laminar flow through a circular

a parallel passage;

* Lecturer in Mechanical Engineering,

t Research  Student,

Department of Mechanical

Engineering.

tube with the wall at constant temperature has
been the subject of a great deal of attention in
the past. The problem was solved in principle by
Graetz [1] but the numerical calculation of the
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required eigenvalues was very tedious and he
was able to obtain only the first three. Nusselt
[2] improved the accuracy of the calculation,
again of the first three eigenvalues. Sellars et al.
[3] extended the analysis to the cases of constant
heat input and axial variations of temperature
and heat input and also derived asymptotic
expressions for the higher eigenvalues.

Recently, Brown [4] applied a digital com-
puter to the Graetz problem and obtained the
first ten eigenvalues for both a round tube and a
flat duct. The amount of numerical work in-
volved in these calculations is so large that the
use of a computer is essential to obtain adequate
accuracy.

The solution of the equivalent problem in an
annulus follows the Graetz solution very closely.
There is the additional variable of the radius
ratio and since there are two surfaces involved
there are many further possible boundary condi-
tions. Previous work on this problem is very
limited. Jakob and Rees [5] gave results for
the fully developed temperature profile but did
not quote the Nusselt numbers since they did not
calculate the bulk mean temperatures. Mura-
kawa [6] presented an analysis for the combined
hydrodynamic and thermal entry length, but
this is very complicated and numerical results
were quoted for one radius ratio only. He also
gave results for the thermal entry length for a
particular radius ratio, but this does not appear
to agree with the corresponding values given in
this paper. Montgomery and Weiss [7] have
surveyed the work on heat transfer in noa-
circular ducts and include a useful bibliography.

Results are presented in this paper for the
thermal entry region with laminar flow in an
annulus with the outside wall insulated. This
case has some practical bearing in double pipe
heat exchangers. Both constant temperature and
constant heat input on the inside pipe are
considered. The results can be easily extended
to axial variations of temperature and heat in-
put on the inner wall by the superposition
thereon. The case of unequal heat inputs on
each side may also occur in practice and this
boundary condition is briefly considered.

BASIC EQUATIONS
The following assumptions are made.
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(1) Constant fiuid physical properties.

(2) Fully developed laminar flow throughout.

(3) Heat flow in the axial direction is negligible.

(4) Temperature changes due to dissipative
effects are negligible.

(5) Uniform temperature in the fluid at the
start of heating.

The energy equation then becomes

¢ f ot
677' (a Y AN a‘r).

The following dimensionless parameters are
defined
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For an annulus we have [8]
2(R2 — R} — 2R, In Ro/R;)
v= R?) + R? - 2R12nax (2)
where
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The bulk mean temperature #;, is defined
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Solution with uniform temperature on the inside
wall, outside wall insulated
The dimensionless temperature T is defined by

t— 1
T te— 1

the solution is

T—3 CuYuexp(— X L),

n=0

@

Where A, and Y, are the a* eigenvalue and
function of the Sturm Liouville problem:
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&y 1dYy ]
de TR dr TNUY=0 {

Y =0, R = R; l %)
dy

a—R-:O, R:Ra. J

The constants Cy, are given by

BR.U. Yy .dR

=2 R U. V4R (©)
The Nusselt number is
5 Y
Wi+ 1 Z CnY exp (— AZL)
Nu = R, (N

€2 T exp(— A0

The eigenvalues and constants were calculated
with the aid of the Manchester University
Mercury Computer for the annuli shown in
Fig. 1 and the results are given in Table 1. The
fully developed Nusselt number is shown on

Fig. 2 and the values in the entrance region on
Fig. 3.
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FiG. 2. Fully developed Nusselt numbers.

As a check, the values for a parallel wall duct
were calculated. The governing equation was
separated in a slightly different way and the
expression for Nusselt number was obtained in
the following form

2 CnY, exp (—

32

The relevant values are given in Table 2. The
Nusselt numbers are very close to those for the
annulus with radius ratio 21:20 and could not
be shown separately on Fig. 3. For a direct

comparison between the eigenvalues for the
parallel plate case and those for the annuli it is

A, L/6)
. ®

% exp (— A2 L/6)

=0 2 R=05 Ri=1-0 Ri=20 i=2 necessary to divide the former by 4/6. The dotted
R°~’R' RoRi=3  RoRi=2:0 Ro/Ri=15 RO/R‘“Z'/N curve is taken from Prins et al. [9] and is for
FiG. 1. The annuli. both sides at uniform temperature.
Table 1. Eigenvalues and constants for the annulus with uniform inside wall temperature
R, =02 R =05 R, =10 R, =20 R, = 200
No. A Ca¥'m A Co¥'m A CaY'ne A Ca¥'a A Ca¥'u
1 14124954 08497293 1282161  1-543650 1-383003  2:651176 1-456400  4:838529 1546883 4402721
2 4582686 03631899 4704357 08017342 4767710 1522857  4-807803  2:956594 4851740 2865738
3 7830728 02911149 7981437 06568992 8052764  1-250203 8093105 2457434 8130398 2394951
4 11 04763 0-2554939 11-23569 0-5815754 11 32103 1-118297 11-36629 2-186027 1- 21-34054 .
5 14-25304 02328140 14-48154 0-5324168 14-58304 1025315 1463486 2-005779 14-67321 19-59566
6 17-45278 0-2165746 17 72327 0-4966960 17-84195 0-9573533 17-90112 1-873612 1794215 18-31187
7 2064920 02041237  20-96265 04690400 21-09910  0-9045479 2116606 1770727 2121035  17-31062
8 2384375 01941389 24-20056 04467082  24-35514  0-8618086 24-43017  1-687354  24-47810 1649834
9 2703685 0-1858733 27-43748 0-4281261 27 61044 0-8261867 2769372 1-617808 2774554 15-82019
10 30-22899 0-1788674 3067373 04123141 30 86523 0 7958358 30-95689 1-558519 31-01279 15-24163
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FiG. 3. Nusselt mumbers for the uniform temperature case. (Both sides heated [9]).

Table 2. Eigenvalues and constants for the parallel
plate case with uniform temperature

No. A, C.Y,,
1 3-818667 2:176545
2 11-89723 1-427232
3 19-92414 1-193603
4 27-93835 1-063782
5 3594734 0-9768908
6 43-95364 0-9129374
7 51-95837 0-8630460
8 59-96211 0-8225616
9 67-96519 0-7887606

10 75-96784 0-7599269

Solution with uniform heat input on the inside wall,
outside wall insulated

Sellars et al. [3] showed that the results for
this case can be derived from those for uniform
temperature by the method of Laplace trans-
forms. The result is obtained in the form of a
power series whose roots are identically the
eigenvalues of the uniform heat input case. Both
this method and the method of direct integration
were used initially to obtain these eigenvalues.
However, the method of Sellars er al. does
require a large number of uniform temperature
cigenvalues to derive the uniform heat input
eigenvalues, and from the first ten previously
calculated, the values obtained did not compare

sufficiently well. The direct integration of the
equations was therefore again used to calculate
this case.

It is more convenient with uniform heat input
to define the dimensionless temperature 8 so that
0 = (r — to)/(qd/k).

The usual procedure (see, for example,
Sparrow et al. [10]) is followed of dividing the
solution into two parts, 6, the fully developed
solution, and 6, an entry temperature which dis-
appears at large L.

The solution is written

RiL
) RS ©)
where G is a function of R only and is the fully
developed profile having a bulk mean value of
zero
0, = 2 CpYpexp(— ALL).

n=0

(10)

Where A, and Y, are the eigenvalues and
functions of

dzy 1 dY ]

hullin Ilhaind 2 _

aee T rag TAUY=0 |

dY
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dR 0, R =R L( )
dY

a-k ZO, R——Ro
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and Again the parallel plate case was used for
_f LR.U.G.Y,dR comparison and the values are given in Table 4.
Cn = [®R.U.Y!dR ° (12) The fully developed temperature profile with
paraliel walls is easily found to be
The Nusselt number becomes »
—~ Y p ' 13 71 AN
G=y'—5 —VTss i4)
1
Nu=-——y 03 ey — vy
Gi [l — — A2
ol ,EO Caexp (— A L)) Also the Nusselt number
The eigenvalues and constants are given in 2 15
X Nu = -~ . (15
Table 3 and the entrance region Nusselt number 15 (] c A L/6
is shown in Fie. 4 321 — X Chexp(— n /6)]
10 311V YY1l 111 L 15- T. n=0
Table 3. Eigenvalues and constants for the annulus with uniform heat input
R, =02 R, =05 R, =10 R; = 200
No. An . Ao C, A Ca A Ca
1 3759784  0-3548737 3728149 04024391 3710159 04243879 1695862  0-4459568
2 6962990 01356844 6085235 01453154 5004383 01496722 7001240 01495232
3 10-15092 008324779 1022638 008121473 10-25972 007966408 1028435 0-07794680
4 13-33620 0-05509405 13-46328 0-05217145 13:51925 0-05055061 13-56024 0-04887533
5 16-52106 003968200 1669850 003682774 1677621 0-03539872 16-83282 0-03396640
6 19-70603 003020993 1993290  0-02762987 2003179 002640702  20-10357  0-02519695
7 2289124  0-02391886 23-16685 0-02163319 23-28655 0-02058747 2337320 0:01956512
8 26-07671 0-01950030 26-40055 0-01748174 26-54078 0-01658108 26-64210 0-01570465
9 29-26243 0-01626300 29 63410 0-01447512 29-79465 0-01369226 29-91052 0:01293594
10 3244839 0:01381129 3286757 001221967 3304830  0-01153305 3317858 001087097
Vaiue G, = 0-108469 G; = 0-143261 G; = 0-161785 G, = 0-184451
100
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F1G. 4. Nusselt numbers for the uniform heat input case.
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Table 4. Eigenvalues and constants for the parallel
plate case with uniform heat input

No. Ay C,
1 9052444 0-447007
2 17-14890 01495767
3 25-19075 0-0778954
4 33-21491 0-04881937
5 41-23094 0-03391114
6 49-24249 0-02515193
7 57-25131 0-01952389
8 65-25834 0-01567085
9 73-:26415 0-01290481
10 81-26912 0-01084480

AXJAL VARIATIONS ON THE INSIDE WALL,
OUTSIDE WALL INSULATED
Using Duhamel’s integral, expressions can be
obtained for Nusselt numbers with axial varia-
tions of temperature and heat input on the core
in terms of the eigenvalues and constants already
obtained {3].

(a) Linear temperature increase
If the initial temperature is zero we obtain

2R, + Z A
z Vet [} — exp(— 22D)]

— exp(— RL)]

!

Nu = . (16)
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The fully developed Nusselt numbers given by
both equations (16) and (17) are equal to the
uniform heat input value. The entrance lengths
are rather longer than that for uniform input.

(c) Half-sine wave heat input variation super-
imposed on a uniform heat input

An axial variation of this form occurs in the
fuel rod of a gas-cooled reactor, and although
the flow in practice is usually turbulent, the
expression for Nusselt number variation may be
of interest. It is necessary to define the heated
length over which the sine wave extends and the
ratio A of the maximum output of the sine
component to the output of the uniform com-
ponent

T

L, .

A=a/b

Heat input variation.

The expression for Nusselt number is

1 + A sin—

wl
L

w0

n=0

L
Gz{l — Z Cpexp(— AL) + AsmL

n=>0

Cyur/L . L =w | @l . .
("/Ln):/_*_ 1)\4 [ A2 cos I + L sin L Azexp(— /\;IL)}}
1 .

(18)

(b) Linear increase of heat input rate

1

{ T Ca [1 —exp(— A”l)]}

L Lx
17

Nu =

n=>=0

Figure 5 shows an example for the annulus
with R; = 1-0. The value of L, was chosen
arbitrarily at 0-1 and three values of the ratio 4
are shown. For large A4 the result tends to that
for the pure half sine-wave and for small 4
to the uniform heat input case previously
obtained.
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Table 5 gives the additional constants which
16 appear in the above expressions for the annulus
\\\ having R; = 1-0 and Fig. 6 shows the Nusselt
" \ \\ “TPure sie (A=) numbers for_ the particular case of 41 = —4o ‘i.e.
12 NN ]j :I‘OO equal heat input rates on each su}e. The sign
\ ~Uniform heat input (4<0) convention adopted for ¢; and ¢, in the above
10
Nu L Table 5. Constants required for calculating Nusselt numbers
8 with unequal uniform heat inputs and uniform heat input on
‘h the outside only (R, = 1-0)
6 — e o —————
No. Yno Dn (DnZn)z
4 D\
\ 1 0-1308397 0:452343 — 0-1110536
2 y 2 — 0-1269216 0-1501202 0:0379933
1 1 3 01251726  0-0777155 — 00199435
0 001 0:02 003 004 005 006 007 0°08 0°09 01 g - 83‘;};;2‘1‘ gg‘gg;}]g —88(1)333186
L . . X 6 — 0-1229720  0-0248635 0-00649469
FiG. 5. .Nusselt numbers: sine and step axial varia- 7 0-1225951 0-01926552 — 0-00504785
tion of heat input, R, = 10, L, = 0-1. 8  — 01222961 001544087 0-00405556
9 0-1220517 0-0127001 — 0-00334231
UNIFORM HEAT INPUTS ON BOTH WALLS 10 — 0-1218466  0-01066189 0-00281051
In some practical situations heat transfer may ((;; = g: (1)2;2;
occur on the outer wall. There may, for example, H — 0198548
be a heat loss from the outer surface in a double- H — 00855143
pipe heat exchanger. _
With uniform but unequal heat transfers on g9
each wall the same eigenvalues apply but a new
set of constants must be determined. For the
case of uniform but unequal temperatures it is
necessary to calculate a new set of eigenvalues. N M,
The result for unequal heat inputs is easily ht::\ | é/\&
obtained by superposing the temperature pro- 4 T ]
—

files resulting from heating on the inside only

and from heating on the outside only. In both

parts of the solution the entrance component is

represented by equation (11). It is necessary to

add to the previous solution the fully developed
profile with the outside heated and to modify

the constants of equation (12). If, for this 0001 oot , 01
component, the developed temperature is H, the P
constants Dy, and the functions Z, the Nusselt Fic. 6. Nusselt numbers: equal uniform heat input
numbers may be written: rate on each side, R, = 1-0.
1
Nuyy = > p - . (19)
Gi[l — 3 Cuexp (— AZL)] + ?IO [H: + X DpZniexp (— AL)]
n=0 2 n=0
1
Nuypy=———— ———- ——— (20)

qgi [Go + X CaYnoexp (— ML)+ Ho [I — X Dy exp (—AL)]

n=0 n="n
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expression is that they have like signs when they
are in the same direction.

Because of the form of equations (19) and (20)
it is possible for the Nusselt number to behave
in an unusual way. It may be negative or pass
through an infinite value for certain ratios of
qolgi-

The wall temperature variation in this case
can be inferred from the Nusselt number varia-
tion which yields the difference between the wall
and bulk mean values. For unequal heat rates
the bulk temperature is given by

1}. 21

t f — dL . Ri Ro
mele= PR F1 IR, F

Thus the wall temperature variation on each
side can be derived from (19) or (20) and (21).
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Résumé—La solution du probléme de Graetz est étudiée dans le cas d'un anneau chauffé par un
enroulement et dont la paroi extérieure est isolée.

On considére que I'on a la fois a une température uniforme et un flux de chaleur uniforme sur la
paroi intérieure, pour des rapports de rayons arbitrairement choisis. On a étudié a titre de comparaison
le cas de plaques planes parelléles isolées d'un cHté.

La solution est étendue a certains cas de variation axiale du flux chaleur de I’enroulement et au cas

ol le flux de chaleur transmis aux deux parois est uniforme mais différent.

Zusammenfassung—Die Losung des Graetz-Nusselt-Problems im Ringraum mit beheiztem Kern und

isolierter Aussenwand wird angegeben. Sowohl der Fall konstanter Wandtemperatur als auch kon-

stanter Wirmestromdichte wurde fiir eine Anzahl willkiirlich gewidhlter Radienverhéltnisse

beriicksichtigt. Als Vergleich dienen zwei parallele Platten, wovon eine isoliert ist. Die Losung lasst

sich auf einige achsiale Variationen der Heizleistung und auf den Fall konstanter, aber ungleicher
Wirmezufuhr von beiden Winden ausdehnen.

AnHoranda—]laeTcA pelleHHe 3ajavyM ['perlia MJiA M30IHPOBAHHOIO CHAPYMHU KOJBUEBOrO

KaHaJa ¢ BHYTPEHHHMM HCTOYHHMKOM TeIsla. PacCMOTDEH KAaK Caydall MOCTOAHHOW TeMrepa-

TVpHL BHYTPEHHell CTEHKH, TaK M CJydalf paBHOMEpHOW MOpavy Temia K Helt 1A pARa mpo-

13BOJIBHO BHIGDAHHHEIX OTHOUIeHMH pamumycoB. IIpomefeno cpasHenmne ¢ MAPANIENbHBIMU

NIACTHHAMM, OJHA IOBEPXHOCTh KOTOPHIX H30JIHMPOBaHA. ]
Pelenne pacnpocTpaHAeTcs Ha ONpefeleHHble CIyval AKCHAILHOTO H3MEHEHUA IIO/Iavil

TEIIa K NeHTPAJIbHOM YaCTH KaHAJA U Ha caydall, KOrja mepefada Temia K OfeHM CTeHRAM

MPOMCXOTUT PABHOMEPHO, HO ¢ PanHOt CKOPOCTHIO.



